
11/3/200512 September2005 1

XML Schema Best Practices, Namespace,
and Versioning Issues

Louis Reich
NASA/CSC

MOIMS/IPR WG Chair
Atlanta,Georgia

September 14,2005

11/3/200512 September2005 2

How Did This Activity Begin

�XML Packaging Structure and Construction Rules(XFDU)

� Recommendation schedule needs final versions of XFDU Schema and
agreement on many XML Schema Elements over the next 3-6 months

� to allow software development,
� interoperability testing and
� development of Best Practices document.

� CCSDS CESG and CMC recognize similar issues at the CCSDS level

� Resolution: 1: XML Schema Best Practices and Schema Services for XFDUs

� Resolution 2: Share Results of Schema Study with MOIMS Area Director and

other interested CESG and WG personnel

� Naming Conventions

� Namespace and Versioning Policies
� XML Schema extensibility Mechanisms

� XFDU Schema Services

I thought it would be easy XML schema had been around for four years

and tools had matured. Web services had provided the killer app ….

11/3/200512 September2005 3

Study Analysis Activities

• Phase 1:Literature Study
• Read and compared a variety of XML Schema Best Practices

documents from Space Agencies, US Government Agencies and
a computer Software vender.
- Result was very few Best Practices were unanimously approved in all

the documents(we have a seven page matrix containing these rules
for future analysis

• Also read the seminal papers on Versioning and Extending XML
Schemas
- Result was that the ideas were excellent but the key attributes of

mustUnderstand and mustIgnore have not been well understood and
were not present in XML Schema 1.0 or planned for XML Schema 1.1

• Did a quick market scan for XML Component (Schemas,style
sheets,dictionaries) Registry/Repository products or services.
- Result was no obvious products that were not web service oriented.

Services such as Microsoft Ebiz and OASIS Registry are no longer
maintained

• Participated by telecon in the W3C Workshop on User Experience
with XML Schema.
- Result was a clear understanding of the areas where the XML Schema

had been too poorly specified or where the implementers did not
understand the subtle points of the standard.

• Oh well, I was wrong, it wasn’t going to be easy

11/3/200512 September2005 4

Study Activities

• Phase 2
• Discovered several excellent 1/2 day and 1day tutorials

on Best Practices for Designing XML Schemas which
were given at top XML Conferences
- Confirmed many of the Naming and Best Practices for

developing reusable and extensible schemas.

• I reviewed several of the current CCSDS
recommendations that use XML Schema as a
specification notation.
- Though each schema parsed, each sample validated and

each recommendation stated their design principals, any
editor would be hard pressed to reuse any schema
component from a different recommendation

• Held a 1/2 day meeting with several of the NASA Editors
of the XML Schema Based CCSDS Recommendations
- Included GSFC engineers and system analysts who would

be the users of the schemas to better understand their views

11/3/200512 September2005 5

Study Activities

• Phase 3
• Did intensive study of the Naming and Design Rules

that are derived from the UBL, OAG and CEFACT
NDRs.
- This includes the US government, various US agencies such

as Navy, Environmental Protection Agency and Internal
Revenue Service, several e-business consortia and other
national efforts including efforts in the Netherlands and the
UK.

- Result 1; These documents are not a complete panacea
though they do have many good ideas. The second version
of the UBL Naming and Design Rules and the US Federal
Naming and Design Rules are in committee and public
review respectively

- Result 2: The wide acceptance seems to be a combination of
e-business pressures and a desperate need for these Best
practices in various E-government initiatives and
overlapping membership among the organizations

11/3/200512 September2005 6

Critical Activities for This Week

• Hold XML Editors and Experts working group meetings to
recommend approaches on:

•Consistent use of qualified vs. unqualified types, elements
and attributes-1.5

•Definition of CCSDS URL hierarchy and namespace
architecture. e.g. URN for targetNamespace, URL for
schemaLocation 1---Include liasoned Standard/Consortium

•Definition of Versioning Approaches 2

•Define various levels of XML Schema reusable components
based on the UBL model

- Look at UBL architecture as a basis for space operations information
architecture

•Is schemaLocation a resolvable URL-!!!!!!!!!!!!

•Naming and Style Guides 1.5

We need to do this before any of our XML Schema
based recommendations go blue and their namespaces
are locked in concrete

11/3/200512 September2005 7

Longer Term Activities

Create a multi-area team to develop an XML schema
services and information architecture

• Define an IETF RFC to obtain a CCSDS URN domain
• Look at UBL architecture as a basis for space

operations information architecture
• Define various levels of XML Schema reusable

components based on the UBL model
• Investigate commercial tools as a basis for CCSDS XML

Schema Service(Registry and Repository)
• Develop a CCSDS NDR and Best Practices Document

11/3/200512 September2005 8

Stuckees - If resources allow

• Erik Barkley
• David Berry
• Lou Reich
• Gerry Simon-
• CNES TBD
• ESA TBD

11/3/200512 September2005 9

09162005 Notes

All stukees plus Felipe, John P.,Leo Hartman,Paul Pechkam

• Clarification of Goals
• Goal is Guidance not Standards
• Changes to Current Books are at the discretion of Current

WG not this group. We can do experiments to demonstrate
tradeoffs or “examples” using current areas of knowledge

• Namespace and versioning - low impact
• High - Guidelines and style guide

- Design issues
- Do one function with one construct

- All element and type name are are upper camel case
- All Attribute names are in lower camel case

- Heritage Issues
• NAV XML - Elements all Caps for consistency with ASCII
• SLE Man - Use of nested choice,units attributed for

documentation
• XFDU - use of lower camel case for everything,use of substiution

groups for extensibility

11/3/200512 September2005 10

Agenda for 06-Oct-2005 XSG Telecon

• 10:00-10:10 Introduction and Agenda Review
• 10:10-10:30 XML Schema Best Practices->Naming and

Design Rules
• 2001-Roger Costello starts Best Practices Web

Site(xfront.com)
• 2002-2004 - Problems with inconsistent tools and frequent

use of JAVA binding tools that do not support full XML
Schema cause many orgtanizations to create internal best
practice documents limiting the use of some XML Schema
constructs. These could be considered “profiles” of XML
Schema

• 2005 - UN/CEFACT NDR based on UBL Published becomes
core of many “best Practices/profiles”(see
http://xml.coverpages.org/ni2005-08-19-a.html)

• 10:30 Specific Issues
• What are the real CCSDS Requirements

- CCSDS is not eBIZ, however the basic architecture may apply as is being
attempted in US Federal NDR

- Extensibility
- Reuse Architecture
- Schematron

• Namespace issues
- URN vs URL
- IANA Registration Hierarchial definition

11/3/200512 September2005 11

Cheryl Conners :Most Crucial Lesson
Learned was:

• To optimize schema design there must be a PLAN. A plan is
based on answering questions like:
• Most important question: “What’s the purpose of the XML

representation?”
- Because Design follows function

• “Is reuse of the schemas and XML components (i.e., XML
elements, XML types, etc.) important?”

• “Is the goal to create an XML implementation or a set of guidelines
used to create an XML implementation?”

• “What is the authoritative source used to derive the XML?”
• “Creating a stovepipe effort or a collaborative solution?”

“There’s never enough time to do it right,

but there’s always time to do it over”

11/3/200512 September2005 12

Federal Naming and Design Rules-Goals (1 of 2)

• a flexible federal modularity model that defines the
structure for creating interoperable schema and
schema modules

• a clearly defined namespace scheme that ensures
consistency across Agencies

• a versioning scheme that will support consistency
in versioning of government schema

• a Federal canonical schema for base Data Types
• specific NDR’s by government agencies or

communities of practice that build on this
document

• a reference to use for a mapping of different
agency NDR’s to each other

11/3/200512 September2005 13

Federal Naming and Design Rules-Goals (2 of 2)

• consistent, reusable XML components that may be
made available for reuse such as:
• Schema
• Schema Modules such as reusable code lists and

identifier lists
• Simple and Complex Types
• Elements
• Attributes

• a set of tools to facilitate ease of development,
validation, and interoperability

11/3/200512 September2005 14

Schema Versioning

• Scenarios..
• New schema changes interpretation of element
• New schema extends the namespace (e.g. new

elements)

• Versioning Approaches
• Option 1: Change the schema version attribute
• Option 2: Change the schemaVersion attribute of the

root element
• Option 3: Change the schema’s targetNamespace
• Option 4: Change the name/location of the schema

11/3/200512 September2005 15

• Option 1: Change the Schema Version Attribute

• Pros
- Easy
- Instance documents do not change if schema only extended
- Applications could interrogate ‘version’ attribute and take action

• Cons
- Validator ignores version attribute – not enforceable

Schema Versioning

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"

attributeFormDefault="unqualified"

version="1.0“ >

11/3/200512 September2005 16

• Option 2A: Change the schemaVersion Attribute of
the Root element

Schema Versioning

<xs:schema xmlns="http://www.exampleSchema"

targetNamespace=http://www.exampleSchema ..>

<xs:element name="Example">

<xs:complexType>

…

<xs:attribute name="schemaVersion"

type="xs:decimal" use="required" fixed="1.0"/>

</xs:complexType>

</xs:element>

11/3/200512 September2005 17

• Option 2A: Change the schemaVersion Attribute of the Root
element

• Approach A
• Defined in Schema as required attribute
• Instance documents forced to set
• Schema validator can enforce

• Advantage
• Instances would not be valid without same version

• Disadvantage
• Does not allow instance to be valid against multiple versions

Schema Versioning

11/3/200512 September2005 18

• Option 2B: Change the schemaVersion Attribute of the Root
element

Schema Versioning

<xs:schema … version="1.3">

<xs:element name="Example">

<xs:complexType>

…

<xs:attribute name="schemaVersion" type="xs:decimal"

use="required"/>

</xs:complexType>

</xs:element>

<Example schemaVersion="1.2"

xmlns="http://www.example"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.example MyLocation\Example.xsd">

11/3/200512 September2005 19

• Option 2B: Change the schemaVersion Attribute of the Root
element of Instance Document
• Approach B

- Version NOT set in root element’s attribute in schema
- Revert to Option 1 (or Similar) to set version in schema
- Use application logic to verify version in schema vs. instance

• Pros
- Caters for compatibility across multiple versions
- App knows about changes

• Cons
- Extra processing by application

Schema Versioning

11/3/200512 September2005 20

• Option 3: Change the Schema’s targetNamespace
• Approach

- Change targetNamspace for each new version

• Pros
- Application knows about change

• Cons
- All instance documents forced to upgrade even for minor changes

Schema Versioning

<xs:schema xmlns="http://www.exampleSchemaV1.0"

targetNamespace="http://www.exampleSchemaV1.0"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"

attributeFormDefault="unqualified">

11/3/200512 September2005 21

• Option 3: Change the Schema’s targetNamespace
• Approach

- Change targetNamspace for each new version

• Pros
- Application knows about change

• Cons
- All instance documents forced to upgrade even for minor change

Schema Versioning

<xs:schema xmlns="http://www.exampleSchemaV1.0"

targetNamespace="http://www.exampleSchemaV1.0"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified" attributeFormDefault="unqualified">

11/3/200512 September2005 22

• Option 4: Change the Schema’s Name/Location
• Approach

- Change schemaLocation

• Pros
- None

• Cons
- schemaLocation is not enforceable
- Some consider it a security risk!

Schema Versioning

11/3/200512 September2005 23

Roger Costello’s Automated Versioning

•Recommendation 1: To avoid breaking namespace-aware
applications with each new version of an XML Schema use
the same namespace for all versions.

•Recommendation 2: To prevent breaking old instance
documents give the new Schema version a different
filename or a different URL location or both.

•Recommendation 3: To facilitate an application in
recognizing that an element's content has changed, don't
use anonymous types. Instead, use named types.

•Recommendation 4: If you change a type when you
create a new version of a Schema then give the type a
different name.

11/3/200512 September2005 24

Roger Costello’s Recommendation
on Versioning

• Recommendation 5: Change the name of an element's type only
if its immediate content has changed.

• Recommendation 6: Use a version attribute on the root element.
If an instance document is a compound document - that is, an
assembly of XML fragments - then place a version attribute on the
root of each fragment.

• Recommendation 7: Applications should use the tag names to
locate data in instance documents. Applications should be
designed to anticipate that the order of tags may change.

• Recommendation 8: Define a system-wide protocol (e.g., fault
reporting mechanism) to be used when an application is unable to
process an instance document it receives from another
application.

11/3/200512 September2005 25

Reusing Schema Components

• Create Own Datatypes..
• Specify complexType

- Composed of other types

• Specify simpleType
- Enumerations
- Patterns
- etc

• Re-use..
• Derive by restriction
• Derive by extension
• Element substitution
• etc.

11/3/200512 September2005 26

XML Schema Main Re-usable
Components

• Schema
• XML Element

• Defined in terms of one or more XML Elements,
complexTypes, or simpleTypes

• ComplexType
• Defined in terms of one or more XML Elements,

complexTypes, or simpleTypes

• SimpleType1

• Defined as a “simple” or “base” type, i.e., a “string”,
“float”, etc.

• Can be a union of named simpleTypes

• Attribute1

• Must be defined as a simpleType
• Annotation (documentation)

Note 1: simpleTypes and Attributes may be defined by a “user-defined type”

11/3/200512 September2005 27

XML Element Construction

• Element declarations are in terms of a type
definition
• simpleType or a collection of other Elements or types

using the complexType definition

• An XML Element may contain an in-line definition:
<element name=”Count_of_Aircraft" type=”xsd:integer"/>

• Or an XML Element can be defined by a type
definition that is located “outside” itself:

<element name=" Count_of_Aircraft "
type=“SomeDB:Count_Of_Items"/>

SomeDB
Schema

SomeDB
Schema

<simpleTypename="Count_Of_Items">

<restriction base=”xsd:integer">

<minInclusivevalue="1"/>

<maxInclusivevalue="999">

</restriction>

</simpleType>

This example uses a
Namespace qualifier to
link to a different
XML Schema

11/3/200512 September2005 28

XML Elements and Attributes

• Debate on the distinction between them
• One COI’s Elements might another COI’s Attributes

• No rules to distinguish between them
• Elements are more flexible than Attributes

• Can be defined as complex or simple types
- A complexType can be a collection (e.g., “sequence”, “all”., etc.) of

Elements or types
- A simpleType must be defined as an XML base type like “string”, “float”

etc., or in terms of another simpleType that is an XML base type

• Attributes
- Must be defined as simpleTypes
- Can’t directly Attribute an Attribute

Conclusion: Since Attributes have so many restrictions,
they should be used only for meta-data

11/3/200512 September2005 29

XML Element and Type Definitions

• XML Elements aren’t as flexible as XML type definitions. For
example, assume:

<Element name= “Count_Of_Aircraft” type=“xsd:integer”/>

• Another Element can’t re-use this definition directly:
<Element name= “Aircraft_Quantity” type=“Count_Of_Aircraft”/> is ILLEGAL

• Can re-use type definitions

<simpleTypename=“Count">

<restriction base=“xsd:integer">

<minInclusivevalue="1"/>

<maxInclusivevalue="999">

</restriction>

</simpleType>

<Element name= “Count_Of_Aircraft”

type=“Count”/>

<Element name= “Aircraft_Quantity”

type=“Count”/>

11/3/200512 September2005 30

XML Element and Type Definitions
(Cont.)

• Re-use of the simpleType definition level rather than at the XML
Element Level has consequences:
• Lose the knowledge that there is an equivalency between the XML

Elements.
• Also lose any of the original Element’s semantic information

(Annotation)
• However, the ease of re-use makes type definitions more flexible

and re-usable by far
• Retains any semantic meaning (e.g., any additional

explanations) that might be available at the type definition level

Conclusion: Don’t create Elements with in-line
definitions. Instead create type definition outside the
XML Element to make these definitions available for
re-use.

11/3/200512 September2005 31

Re-use Methods

• XML’s Import
• XML’s Include
• XML’s ref
• XML’s Substitution Groups
• XML’s Attribute Groups
• XML’s Restriction
• XML’s Extension
• XML’s Model and Attribute Group Definitions
• XML’s Redefine
• etc.
• Cut and Paste

11/3/200512 September2005 32

Schema Capabilities for Re-use

• XML “Import”
• Link to other namespaces (can be another Schema).

Acts like a pointer to a specific information object(s)
in the linked namespace(s)

• Maintains semantic information of original
information

• Maintains meta-data about source and versioning
• In future, might be possible to have changes to the

original schema roll-over to re-used components
(CM issue)

• XML“Include”
• Creates one logical Schema from multiple

namespaces (can be other Schema(s))
• Same advantages as “Import”
• If resultant Schema is very large, might impact

processing speed

11/3/200512 September2005 33

XML Schema Capabilities for Re-use

• XML’s “import” or “include” (continued)
- Can re-use Global elements and type definitions
- Any elements and type definitions that exist as part of another

definitions can’t be re-used directly
<element>

<element/>
<element />
<element />

</element>

• XML’s “ref”
• Can re-use Global elements

- <element ref=“Element_Name” minOccurs=“1”/>

• Can’t change the XML Element’s name
• Can’t change the XML Element’s composition
• Only “minOccurs”, “maxOccurs”, “id”, and “annotation”

allowed

These elements can’t be pulled
out individually and be re-used

11/3/200512 September2005 34

Schema Capabilities for Re-use

• XML’s Substitution Groups
• Can modify the original XML Element: change name,

restrict or extend the definition
• Can have multiple members
• Can’t change the type (e.g., can’t change integer to float)
• Limited to Global XML Elements

• XML’s “extension base”
• “Adds” the original definition to the new element
• Can’t alter the original definition
• Can’t use XML elements to extend other elements

11/3/200512 September2005 35

Schema Capabilities for Re-use (Cont.)

• XML’s “extension base” Example:

<xsd:complexType name="base.type">

<xsd:sequence>
<xsd:element name=”free_text" type=”free.text" minOccurs="0"/>

<xsd:element name="information" type="information"/>
</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="airspace.shape">

<xsd:complexContent>
<xsd:extension base="base.type">

<xsd:sequence>

<xsd:element name="track_info" nillable="true">
<xsd:complexType>

…

Result: the complexType “airspace.shape” contains the
two elements defined in the complexType “base.type”

11/3/200512 September2005 36

Schema Capabilities for Re-use (Cont.)

• XML’s “restriction base”
• Can add restrictions to the original definition
• In XML-MTF, most common usage of restriction was to

specify legal values and ranges; for example:

<xsd:simpleType name="latitude.degrees.17.1">

<xsd:restriction base="xsd:integer">

<xsd:minInclusive value="00"/>

<xsd:maxInclusive value="90"/>

<xsd:pattern value="[0-9]{2}"/>

</xsd:restriction>

</xsd:simpleType>

11/3/200512 September2005 37

Other Capabilities for Re-use

• Cut and paste
• Just copy a registered XML component (element,

type definition, etc.,) and paste into new Schema

• Consequences:
• Lose logical link that identifies the original

namespace of the information
• Lose versioning information (if any)
• Won’t be updated when original schema is revised

(if the CM process does someday supports this
function)

Conclusion: The XML “Import/re-use” capabilities are
preferable to the “cut and paste” method to access re-
usable components located in other namespaces

Conclusion: The XML “Import/re-use” capabilities are
preferable to the “cut and paste” method to access re-
usable components located in other namespaces

11/3/200512 September2005 38

Impact of Restricting and Extending

Local XML

Instance

Document

SUB-SET

Local XML

Instance

Document

SUPER-SET

From the “Sub-set” to the “Super-set”: Will be valid for both end systems

From the “Super -set” to the “Sub-set”: May be INVALID for the system using the sub-set

System B is using the registered
XML-MTF Element “helicopter_type

and_model” with its type
Definition of 646 helicopters.

System A is re-using the XML-MTF
Element “helicopter_type_

and_model” but the type

Definition contains only 5
helicopters.

11/3/200512 September2005 39

Summary of Re-use Methodologies

• XML provides many capabilities that support re-
use
• Many depend on using global definitions
• Each re-use method has pros and cons
• Elements are not as flexible to re-use as type

definitions

• Other re-use methodologies (cut and paste) will
be used
• May have an impact on interoperability

• CM of the re-used Schema components is going
to be an issue

• Thinking re-use should impact your Schema
design

11/3/200512 September2005 40

Modularity Model – Reuse Approach

Schema ModuleType

File

Namespace

W3C XML Schema

1

1

1

1
..
*

Root Schema
Module

Internal Schema
Module

Complex Data
Reusable Modules

Unqualified Data Type
Module

Qualified Data Type
Module

Identifier List
Module

Code List
Module

Other Standards Body
Modules

Simple Data

Module

11/3/200512 September2005 41

Modularity Model – Importing Data Types From Standards

• UBL and other
standards bodies
are converging
on UN/CEFACT
Data Type
schema modules

• UBL and other
standards bodies
are converging
on single
approach to code
lists

Root Schema Module

Internal Schema

Module(s)

Message

Assembly –
Single

Namespace

External Schema Modules – Individual Namespaces

Source Standards
Unqualified DataType

Schema Module

Code List (CL)
Schema Module(s)

0..*

0..*Identifier List (IL)
Schema Module(s)

1
Source Standards
Qualified DataType

Schema Module

1

1

Include

Import

External Standards
Body Reusable

Entities Schema
Module

Other External

Reusable Entities
Schema Module

0..*

0..*

Import

Import

0..* 0..*

0..*

0..*

1

Root Schema Module

Internal Schema

Module(s)

Message

Assembly –
Single

Namespace

External Schema Modules – Individual Namespaces

Source Standards
Unqualified DataType

Schema Module

Code List (CL)
Schema Module(s)

0..*

0..*Identifier List (IL)
Schema Module(s)

1
Source Standards
Qualified DataType

Schema Module

1

1

Include

Import

External Standards
Body Reusable

Entities Schema
Module

Other External

Reusable Entities
Schema Module

0..*

0..*

Import

Import

0..* 0..*

0..*

0..*

1

11/3/200512 September2005 42

Flexibility for Everyone

• Government organizations
and initiatives can leverage
standards body and federal
schema

• Organizations can create
organizationally unique
• Qualified and unqualified

Data Types
• Complex Data Element

reusables
• Simple data element

reusables
• Code Lists
• Identifier Lists

Root Schema Module

Internal Schema

Module(s)

Message

Assembly –

Single
Namespace

External Schema Modules – Individual Namespaces

Federal

Simple Data Elements

 Schema Module

Federal

Complex Data

Elements

Schema Module

Federal Unqualified

DataTypes (FUDT)

 Schema Module

Federal Qualified

DataTypes (FQDT)

Schema Module

Source Standards

Unqualified DataType

Schema Module

Code List (CL)

Schema

Module(s)

0..1

0..*

0..*

0..*

1

0..*

1

1

1

Agency Supplemental

Unqualified DataTypes
(ASUDT)

 Schema Module

Agency Supplemental

Qualified DataTypes

(ASQDT) Schema

Module

Identifier List (IL)

Schema

Module(s)

Agency

Complex Data

Elements

 Schema Module

Agency

Simple Data Elements

 Schema Module

1

1

1

0..*

0..*

0..*

0..*

1

11

0..*

1

0..1

0..10..1

0..1

1

0..1

4..*

1 1

1

1

Source Standards

Qualified DataType

Schema Module

1

0..*

0..* 0..*0..*

0..*

1

Include

Import

External Standards

Body Reusable

Entities Schema

Module

Other External

Reusable Entities

Schema Module

0..*

0..*

Import

Import

Note: relationships

between shcema modules

in different namespaces

are xsd:import

Root Schema Module

Internal Schema

Module(s)

Message

Assembly –

Single
Namespace

External Schema Modules – Individual Namespaces

Federal

Simple Data Elements

 Schema Module

Federal

Complex Data

Elements

Schema Module

Federal Unqualified

DataTypes (FUDT)

 Schema Module

Federal Qualified

DataTypes (FQDT)

Schema Module

Source Standards

Unqualified DataType

Schema Module

Code List (CL)

Schema

Module(s)

0..1

0..*

0..*

0..*

1

0..*

1

1

1

Agency Supplemental

Unqualified DataTypes
(ASUDT)

 Schema Module

Agency Supplemental

Qualified DataTypes

(ASQDT) Schema

Module

Identifier List (IL)

Schema

Module(s)

Agency

Complex Data

Elements

 Schema Module

Agency

Simple Data Elements

 Schema Module

1

1

1

0..*

0..*

0..*

0..*

1

11

0..*

1

0..1

0..10..1

0..1

1

0..1

4..*

1 1

1

1

Source Standards

Qualified DataType

Schema Module

1

0..*

0..* 0..*0..*

0..*

1

Include

Import

External Standards

Body Reusable

Entities Schema

Module

Other External

Reusable Entities

Schema Module

0..*

0..*

Import

Import

Note: relationships

between shcema modules

in different namespaces

are xsd:import

11/3/200512 September2005 43

Extending Schema Validation

• What About the Following Scenarios..
• Element Dependencies..

- If value of <minimum> greater than value of <maximum>

• Attribute Dependencies..
- If value of attribute travel mode is water value of

<Transportation> is either ship or boat
- If value of attribute travel mode is air value of <Transportation> is

plane
- If value of attribute travel mode is land value of <Transportation>

is either car or bicycle

• Cross-document Dependencies..
- Compare value of doc1 <PaymentReceived> with doc2

<PaymentDue>

11/3/200512 September2005 44

• Possible Approaches..
• Option 1: Supplement with another schema language

- E.g. Schematron

• Option 2: Write code using conventional programming
language

• Option 3: Use XSLT

Extending Schemas

11/3/200512 September2005 45

Extending Schemas

• Using Schematron..
• Language for making assertions about patterns
• Relies heavily on XPath expressions
• Requires use of XML Schema xsd:appinfo element

- Provides machine readable comment to programs

<xsd:annotation>

<xsd:appinfo>

<assert test=“A > B” >A greater than B</assert>

</xsd:appinfo>

</xsd:annotation>

XPath Expression

Emitted if assertion is false

11/3/200512 September2005 46

Extending Schemas

XML

Schema

Schematron

Validator

Extracts assertions

from appinfo elements

XML

Data

• Processing Model

Valid / invalid

Schema with

embedded appinfo
elements containing

rules

11/3/200512 September2005 47

• appinfo elements extracted by schematron
• Schematron defines assert/report elements

• “test” attribute is XPath expression

Extending Schemas

<xs:annotation>

<xs:appinfo>

<sch:pattern id=“onLoanTests">

<sch:rule context="bk:book">

<sch:report test="@on-loan and not(@return-date)">

Every book that is on loan must have a return date

</sch:report>

</sch:rule>

</sch:pattern>

</xs:appinfo>

</xs:annotation>

11/3/200512 September2005 48

Extending Schemas

• Schematron.Net
• .Net Implementation – Validator class

using System;

using System.Xml;

using NMatrix.Schematron;

class Program{

public static void Main(string[] args){

try{

Validator validator = new Validator();

validator.AddSchema("books.xsd");

validator.Validate(new XmlTextReader("books.xml"));

}catch(Exception e){

Console.WriteLine(e);

}

}

}

Validator validator = new Validator();

validator.AddSchema("books.xsd");

validator.Validate(new

XmlTextReader("books.xml"));

11/3/200512 September2005 49

Valid / invalid

XSL

Extending Schemas

• Using XSLT

XML

Data

Schema

Validator

XSL

Processor

Valid / invalid
<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns="example" >

<xsl:template match='measurement'>

<xsl:if test='minimum > maximum'>

minumum greater than maximum!

</xsl:if>

</xsl:template>

</xsl:stylesheet>

XSD

